Bond energies in diatomic molecules

Homonuclear

Bond	Energy/kJ mol ^{₋1}	
н—н	436	
D—D	442	
N=N	944	
O=0	496	
F—F	158	
CI-CI	244	
Br—Br	193	
I—I	151	

Bond energies in polyatomic molecules Homonuclear

Bond	Energy/kJ mol ⁻¹
c—c	350
C=C	610
C≡C	840
C==== C (benzene)	520
N—N	160
N=N	410
0—0	150
Si—Si	222
P—P	200
s—s	264

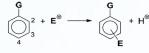
Heteronuclear

Bond	Energy/kJ mol ⁻¹		
С—Н	410		
C—F	485		
C—C1	340		
C—Br	280		
C—I	240		
C—N	305		
C=N	610		
C≡N	890		
C—0	360		
C=0	740		
C=O in CO ₂	805		
N—H	390		
N—C1	310		
0—н	460		
Si—Cl	359		
Si—H	320		
Si-O (in SiO ₂ (s))	460		
Si=O (in SiO ₂ (g))	640		
Р—Н	320		
P—C1	330		
P_0	340		
P=O	540		
S—H	347		
S-Cl	250		
S—0	360		
S=0	500		

Heteronuclear

Bond	Energy/kJ mol ^{−1}
H—F	562
H—C1	431
H—Br	366
H—I	299
C≡O	1077

E^O in decreasing order of oxidising pow


E ^O in decreasing order of oxidising power			
Electrode	re	action	E ^e / V
F ₂ + 2e ⁻ =	-	2F	+2.87
$S_2O_8^{2^-} + 2e^- =$	-	2SO42-	+2.01
$H_2O_2 + 2H^* + 2e^- =$	-	2H ₂ O	+1.77
MnO₄ ⁻ + 8H [*] + 5e ⁻ =	-	Mn ^{2*} + 4H ₂ O	+1.52
PbO ₂ + 4H [*] + 2e ⁻ =	-	Pb ²⁺ + 2H ₂ O	+1.47
C12 + 2e =	=	201	+1.36
Cr ₂ O ₇ ²⁻ + 14H [*] + 6e ⁻ =	=	2Cr ³⁺ + 7H ₂ O	+1.33
O ₂ + 4H [*] + 4e ⁻ =	=	2H ₂ O	+1.23
Br ₂ + 2e ⁻ =	-	2Br ⁻	+1.07
NO3 ⁻ + 10H ⁺ + 8e ⁻ =	-	NH4 + 3H2O	+0.87
C10" + H20 + 2e" =	=	C1" + 20H"	+0.81
NO3" + 2H" + e" =	-	NO ₂ + H ₂ O	+0.81
Ag" + e" =	-	Ag	+0.80
Fe ³⁺ + e ⁻ =	-	Fe ²⁺	+0.77
I ₂ + 2e ⁻ =	-	21-	+0.54
$O_2 + 2H_2O + 4e^- =$	=	40H ⁻	+0.40
Cu ²⁺ + 2e ⁻ =	-	Cu	+0.34
SO4 ²⁻ + 4H [*] + 2e ⁻ =	-	SO ₂ + 2H ₂ O	+0.17
Sn ^{4*} + 2e ⁻ =	-	Sn ²⁺	+0.15
S ₄ O ₆ ²⁻ + 2e ⁻ =	-	2S2O32-	+0.09
2H* + 2e ⁻ =	-	H ₂	0.00
Pb ^{2*} + 2e ⁻ =	-	Pb	-0.13
Sn ²⁺ + 2e ⁻ =	-	Sn	-0.14
Electrode	re	action	E ^e / V
O ₂ + H ₂ O + 2e [−] =	<u>+</u>	HO2 + OH	-0.08
2H₂O + 2e ⁻ ₹	÷	H ₂ + 20H ⁻	-0.83
Pb ^{2*} + 2e ⁻ ₹	÷	Pb	-0.13
Pb ^{4*} + 2e [−] ₹	•	Pb ²⁺	+1.69
PbO ₂ + 4H [*] + 2e ⁻ ₹	•	Pb ²⁺ + 2H ₂ O	+1.47
SO₄ ^{2−} + 4H [•] + 2e [−] =	•	SO2 + 2H20	+0.17
S₂O ₈ ²⁻ + 2e ⁻ ≠	•	2504	+2.01
S₄O ₆ ²⁻ + 2e ⁻ ≠	-	2S2O3 ²⁻	+0.09
Sn²* + 2e⁻ ₹	-	Sn	-0.14
Sn ⁴ * + 2e [−] ₹	+	Sn ²⁺	+0.15
V ^{2•} + 2e [−] ₹	÷	v	-1.20
V³* + e ⁻ ≂	•	∨²•	-0.26
VO ^{2*} + 2H* + e [−] =	÷	V ³⁺ + H ₂ O	+0.34
VO2 + 2H + e =	÷	VO ²⁺ + H ₂ O	+1.00
VO3 + 4H + e ₹	+	VO ²⁺ + 2H ₂ O	+1.00
Zn²• + 2e⁻ 🖛	+	Zn	-0.76
nic states refer to aqueous ions but other state symbols have been omitted.			

All ionic states refer to aqueous ions but other state symbols have been omitted

E[⊕] IN ALPHABETICAL ORDER

Electro	de re	action	E [⊕] /V
Ag" + e	+	Ag	+0.80
A1 ³⁺ + 3e [−]	,	Al	-1.66
Ba ^{2*} + 2e ⁻	≓	Ва	-2.90
Br ₂ + 2e ⁻			+1.07
Ca ²⁺ + 2e ⁻			-2.87
Cl ₂ + 2e ⁻			
			+1.36
2HOC1+2H+2e			+1.64
C10" + H20 + 2e"	1	C1" + 20H"	+0.81
Co ²⁺ + 2e ⁻	1	Co	-0.28
Co ³⁺ + e ⁻	#	Co ²⁺	+1.89
[Co(NH ₃) ₆] ²⁺ + 2e ⁻	1	Co + 6NH3	-0.43
Cr²+ + 2e⁻	#	Cr	-0.91
Cr ³⁺ + 3e ⁻	≠	Cr	-0.74
Cr ³⁺ + e ⁻	#	Cr2+	-0.41
Cr ₂ O ₇ ²⁻ + 14H [*] + 6e ⁻			+1.33
Cu* + e ⁻	≓	Cu	+0.52
Cu ²⁺ + 2e ⁻			
			+0.34
Cu ² * + e [−]			+0.15
[Cu(NH ₃) ₄] ^{2*} + 2e ⁻		-	-0.05
F ₂ + 2e ⁻	1	2F ⁻	+2.87
Fe ²⁺ + 2e ⁻	#	Fe	-0.44
Fe ³⁺ + 3e ⁻	#	Fe	-0.04
Fe ³⁺ + e ⁻	ŧ	Fe ²⁺	+0.77
[Fe(CN) ₆] ³⁻ + e ⁻	1	[Fe(CN) ₆] ⁴⁻	+0.36
Fe(OH)3 + e	1	Fe(OH) ₂ + OH ⁻	-0.56
2H* + 2e ⁻	1	H ₂	0.00
I ₂ + 2e ⁻	1	21	+0.54
K" + e ⁻	1	к	-2.92
Li [*] + e ⁻	1	Li	-3.04
Mg ^{2*} + 2e ⁻	1	Mg	-2.38
Mn²* + 2e ⁻	#	Mn	-1.18
Mn ³⁺ + e ⁻	#	Mn ²⁺	+1.54
MnO ₂ + 4H [*] + 2e ⁻	#	Mn ²⁺ + 2H ₂ O	+1.23
MnO₄" + e"	#	MnO4 ²⁺	+0.56
MnO ₄ " + 4H" + 3e"		MnO ₂ + 2H ₂ O	+1.67
MnO4" + 8H" + 5e"	ŧ	Mn ²⁺ + 4H ₂ O	+1.52
NO3 + 2H + e	#	NO ₂ + H ₂ O	+0.81
NO3" + 3H" + 2e"	#	HNO ₂ + H ₂ O	+0.94
NO3" + 10H" + 8e"	#	NH4* + 3H2O	+0.87
Na*+ e*	#	Na	-2.71
Ni ²⁺ + 2e ⁻	=	Ni	-0.25
[Ni(NH ₃) ₆] ^{2*} + 2e ⁻	=	Ni + 6NH3	-0.51
$H_2O_2 + 2H^* + 2e^-$	=	2H ₂ O	+1.77
HO ₂ ⁻ + H ₂ O + 2e ⁻	#	зон	+0.88
O ₂ + 4H ⁺ + 4e ⁻	#	2H ₂ O	+1.23
O ₂ + 2H ₂ O + 4e ⁻	=	40H ⁻	+0.40
O2 + 2H" + 2e"	=	H ₂ O ₂	+0.68

The orientating effect of groups in aromatic substitution reactions The position of the incoming group, E, is determined by the nature of the group, G, already bonded to the ring, and not by the nature of the incoming group E.

	-alkyl -OH or -OR -NH ₂ , -NHR or -NR ₂ -NHCOR	-С <i>l,</i> -Вг, -І	-CHO, -COR -CO ₂ H, -CO ₂ R -NH ₃ ⁺ -NO ₂ , -CN
Reactivity of ring (compared to benzene)	Activated	Deactivated	Deactivated
Position of E (relative to position of G)	2- and/or 4-	2- and/or 4-	3-

MIRACLE LEARNING CENTRE PTE LTD 144 UPPER BUKIT TIMAH ROAD #03-01 BEAUTY WORLD CENTRE S(588177) WWW.MIRACLELEARNINGCENTRE.COM

CALL 6463 8756 OR SMS 8128 8342 / 9839 9908 Science and Maths Specialist (PRI, Sec, JC)

f 💙 🦻 🖸 🖸